

The **multifunctional** air-water split heat pump.

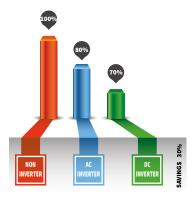
PATENTED TECHNOLOGY

The combination of an inverter air-water heat pump together with a water-water heat pump allows heating/cooling and high temperature DHW production, independently from the outside weather conditions.

DHW 75°C

Energy class:

DHW AND COMFORT AT THE SAME TIME


The two interconnected refrigerator cycles allow the decoupling of the heating/cooling from the DHW production, enabling them to operate in parallel, avoiding thus interruptions in the domestic comfort supply.

75°C DOMESTIC HOT WATER

High temperature DHW storage allows a reduction of the boiler volume up to 30%, to heat bathroom heater radiators and avoids highly energyconsumpting anti-legionella cycles that are normally performed through the use of electrical resistances.

TOUCH SCREEN USER INTERFACE

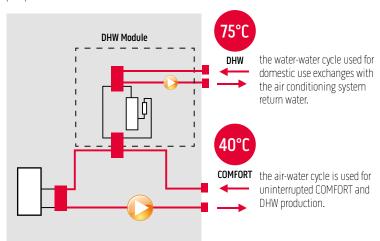
Sherpa AQUADUE® control is extremely flexible and configurable, and it allows to:

- customize the response limits of the two cycles at installation
- customize comfort and DHW needs at installation
- optimize energy performances by managing the operation of the double refrigeration circuit.

Compatible with:

The AQUADUE® system manages:

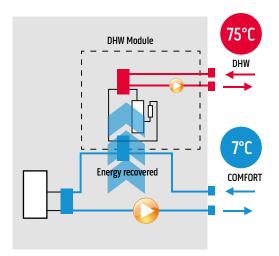
Cooling + DHW at a high temperature



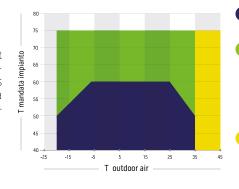
Heating + DHW at a high temperature

HEATING MODE

+ DHW at high temperature


DHW production is guaranteed independently from the outside temperature for an optimal operation throughout the year, which is not guaranteed by traditional heat pumps.

COOLING MODE


+ DHW at a high temperature with energy recovery

The energy normally dissipated outside is recovered and used to produce DHW up to 75 ° C.

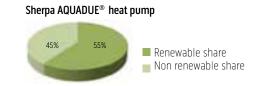
PERFORMANCE AND ENERGY ADVANTAGES

In adverse weather conditions traditional heat pumps decrease thermal output producing water at a lower temperature. Sherpa AQUADUE® as well as extending the area of operation ensures a constant heat output, in the production of Domestic Hot Water.

Optimum area of operation of traditional heat pumps

Area of operation extended - AQUADUE® technology


The double refrigerator circuit allows higher DHW production temperatures thanks to the water-water circuit which are independent of outside air temperature.


Heat recovery area - AQUADUE® technology

in summer cooling operation the refrigeration cycle dedicated to DHW production removes heat from the comfort circuit increasing the overall efficiency of the system.

RENEWABLE SHARE COVERAGE FOR DHW PRODUCTION WITHOUT ADDITIONAL EQUIPMENT - RES DIRECTIVE

AQUADUE® technology thanks to efficient heat management guarantees, in buildings of a high energy class, the coverage share from renewable energy (Legislative Decree 28/2011) without the installation of additional devices.

SHERPA AQUADUE®

* non hermetically sealed equipment containing fluorinated gas with GWP equivalent 2088

FEATURES

DHW (Domestic Hot Water) production at a high temperature, up to 75 $^{\circ}$ C.

DHW management: a group of water-water heat pumps integrated in the indoor unit provides domestic hot water at a high temperature regardless of external weather conditions.

Continuous absolute availablity of DHW: guaranteed by the redundance of the double refrigerating circuit system.

Antilegionella cycles avoidable using the refrigeration cycle at high temperature.

2-stage electric heater: single or double strength activation to support the heat pump through a simple configuration of the electronic control.

Each stage is activated according to the actual need of thermal power in order to optimize power consumption.

Configurable points: two set points in cooling mode Three set points in heating mode (one of them for DHW): the set points are also selectable by remote contact.

Weekly programmer DHW, holidays and daily with night mode.

Climatic curves with outside air temperature sensor: two curves are available, one for cooling and one for heating. Climatic curves allow you to modify system water temperature supply depending on climate conditions, adapting the heat requirements of the building in order to obtain energy savings.

Refrigerant gas: R410A* for the reversible circuit dedicated to air-conditioning and R134a** for the high temperature circuit dedicated to DHW production.

- Support structure
- 2 Primary circuit system heat exchanger
- 3 Expansion tank system circuit
- 4 Electric resistors collector
- 5 Primary circuit electronic circulation pump
- 6 3-way valve
- Secondary circuit compressor (DHW)
- 8 Expansion valve circuit DHW
- 9 Heat exchanger circuit DHW
- 10 DHW circuit electronic circulation pump
- Flow regulator
- 12 Gauge
- 13 Flow gauge
- 14 Automatic safety vent
- 15 Refrigerant connections
- 16 Water connections (system and external boiler)

STANDARD EQUIPMENT:

- Outside temperature sensor kit
- DHW boiler sensor kit

^{**} non hermetically sealed equipment containing fluorinated gas with GWP equivalent 2006

PELLET STOVES

HOME PAGE

The home page shows the following information:

- A Date and time system
- B Current Active Mode (Stand-by, cooling, heating, only DHW)
- C Activated features (climate curve, DHW Turbo, DHW OFF, anti legionella, Night, ECO
- D Alarms/overrides (flashing)
- E Temperature values water system, active system timers, Holiday, Rating
- F Temperature values DHW water boiler, active timers domestic hot water, Holiday
- G Activation icons:

Mode: operating mode

Tset: system and domestic set point Tshow: reading of temperature sensors

Timers: time programming Menu: machine functions

OPERATING MODES

Touching the Mode . , icon, you can access the operating modes configuration

page. The selection icons for all available operating modes are on this page:

- Stand-by 🚇 , the system is off
- Cooling , the system produces cold water until it reaches the set-point (set point fixed or dynamically defined by climatic curve)
- Heating the system produces hot water up to the set-point (set point fixed or dynamically defined by climatic curve)
- ECO , energy savings (if climate curve active the ECO set point is not considered)
- Night , the system limits the yield and noise of the outside unit
- Turbo DHW, the system produces hot water using the entire power of the outdoor unit up to the limit set.

SET POINT

Tapping the Tset icon, you can access the configuration page of the set point.

- Cooling water temperature
- ECO cooling water temperature
- Heating water temperature
- ECO heating water temperature
- Domestic hot water temperature (external boiler set point).

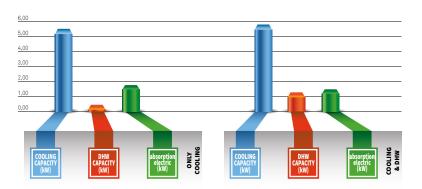
The set points for heating and cooling are not considered by the control in the case where the climate curve mode set-point is enabled.

Set point values are changed with a simple touch of the set value

TIMERS

Tapping the Timers icon 🛂 you can access available programs.

- Timer heating/cooling
- Timer DHW
- Timer night
- Holidays


Tapping the "Timer Heat/ Cool" To DHW Timer or "Timer Night" icon, you can access the page where the activation bands of each timer can be visualized.

SHERPA AQUADUE®

		AQUADUE 7	AQUADUE 11	AQUADUE 13	AQUADUE 13T	AQUADUE 16	AQUADUE 16T
Indoor unit	Code	599	510A		5995	506A	
Outdoor unit	Code	OS-CEBSH24EI	OS-CEBCH36EI	OS-CEINH48EI	OS-CETNH48EI	OS-CEINH60EI	OS-CETNH60EI
Air-water cycle (system circuit)							
Heating capacity (a)	kW	6,5	10,5	12,5	12,5	14	16
COP	W/W	4,1	4,1	4,1	4,1	4,1	4,1
Heating capacity (b)	kW	5,0	8,3	10,0	10,0	10,5	12,0
COP	W/W	3,1	3,2	3,1	3,1	2,9	2,9
Heating capacity (c)	kW	6,2	9,9	11.6	11.6	13,0	14,6
COP	W/W	3,4	3,2	3,3	3,3	3,2	3,0
Heating capacity (d)	kW	4,8	7,8	9,3	9,3	9,8	10,9
COP	W/W	2,5	2,3	2,2	2,2	2,3	2,2
Cooling capacity (e)	kW	7,6	12,1	12,6	12,8	13,8	15,3
EER	W/W	4,0	4,4	3,5	3,5	3,1	3,2
Cooling capacity (f)	kW	5,6	8,1	10,4	10,4	11,3	12,8
EER	W/W	3,1	3,1	3	3	2,7	2,8
Energy efficency class (35°C - 55°C)	**/**	A A+	A A+	A A+	A A+	A A+	A A+
Water-water cycle							
Heating capacity (h)	kW	2,15	2,15	2.15	2,15	2,15	2,15
COP	W/W	© 3,12	© 3,12	3,12	© 3,12	⊕ 3,12	© 3,12
Heating capacity (i)	kW	1,6	1,6	1,6	1,6	1,6	1,6
COP	W/W	2,58	2,58	2,58	2,58	⊕ 2,58	2,58
Indoor unit noise level	VV/ VV	2,30	₩ 2,30	2,30	(a) 2,30	2,30	● 2,30
Sound pressure in heating or cooling mode	dB(A)	30	30	30	30	30	30
Sound power in heating or cooling mode	dB(A)	41	41	41	30 41	41	41
Sound power in heating or cooling mode and DHW	dB(A)	47	47	47	47	47	47
	ub(A)	4/	41	4/	41	4/	41
Outdoor unit noise level	dB(A)	51/52	53/55	57/57	57/57	57/57	57/59
Sound pressure			·	70/70	70/70	70/70	70/72
Sound power	dB(A)	64/65	66/68				
Refrigerant/water exchangers		Brazed plates	Brazed plates	Brazed plates	Brazed plates	Brazed plates	Brazed plates
Diameter refrigerant inlet connection		3/8" 5/8"	3/8" 5/8"	3/8" 5/8"	3/8"	3/8"	3/8"
Diameter refrigerant outlet connection	144	5/8"			5/8"	5/8"	5/8"
Circulator absorption DHW	W			-43			
System circulator absorption	W	00		- 130	0.0	70	70
Available pressure system circulator	kPa	80	82	80	80	78	73
Expansion vessel capacity	1// 1 // 1	8	8	8	8	8	8
Power supply internal unit	V/ph/Hz	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50	230/1/50
Maximum current absorption (g)	A	14,1	14,1	27,2	27,2	27,2	27,2
Power supply external unit	V/ph/Hz	230/1/50	230/1/50	230/1/50	400/3/50	230/1/50	400/3/50
Maximum current absorption	А	13,5	22	28	8,15	28	11,5
Hydraulic connections		1"]"]"]"]"]"
Additional electric resistors	kW	1,5+1,5	1,5+1,5	3+3	3+3	3+3	3+3
Refrigerant gas air-water cycle	type	R410A	R410A	R410A	R410A	R410A	R410A
Global warming potential	GWP	2088	2088	2088	2088	2088	2088
Refrigerant gas charge	Kg	2,1	2,75	4,45	4,0	4,45	4,2
Refrigerant gas (DHW)	type	R134a	R134a	R134a	R134a	R134a	R134a
Global warming potential	GWP	1430	1430	1430	1430	1430	1430

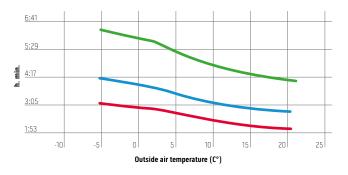
		7				1	1			10	3			13	ST .			1	6			16	T	
	cooling capaci- ty(kW)	Dhw capacity (kW)	Absorp- tion (kW)	EER COP	cooling capaci- ty(kW)		Absorp- tion (kW)	EER COP	cooling capaci- ty(kW)	Dhw capacity (kW)	Absorp- tion (kW)	EER COP												
Cooling W7 A35	5,60	0,00	1,81	3,1	8,10	0,00	2,63	3,1	10,40	0,00	3,47	3,0	10,40	0,00	3,47	3,0	11,30	0,00	4,19	2,7	12,80	0,00	4,57	2,8
Dhw W65/W12	0,64	1,28	0,56	2,3	0,64	1,28	0,56	2,3	0,64	1,28	0,56	2,3	0,64	1,28	0,56	2,3	0,64	1,28	0,56	2,3	0,64	1,28	0,56	2,3
Cooling W7 A35 and DHW W65/W12	5,60	1,28	1,55	3,6	8,10	1,28	2,35	3,4	10,40	1,28	3,16	3,3	10,40	3,16	3,16	3,3	11,30	1,28	3,65	3,1	12,80	1,28	4,23	3,0

COOLING + DHW WITH ENERGY RECOVERY

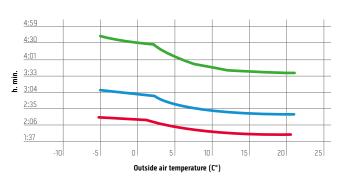
During summer operation in cooling mode, the cycle dedicated to DHW production extracts heat from return water from the system circuit.

The cooling requirements of the building is partially satisfied by the DHW cycle and the comfort refrigerating cycle must deliver less power by reducing the speed of the inverter compressor.

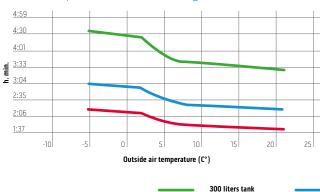
The heat taken from the system is recovered in hot water for domestic use.

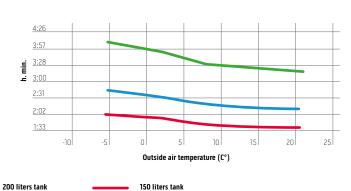

The efficiency of the integrated system increases (ratio between the energy produced and the energy absorbed from the mains).

OLIMPIA

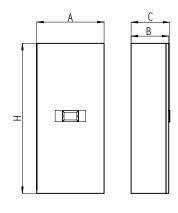

LOADING TIME OF BOILERS with 15-65 °C water

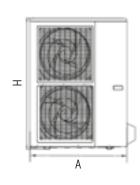
The patented Aquadue® double cycle allows rapid loading times of boilers, up to 40% faster than an equally capacious heat pump boiler.*

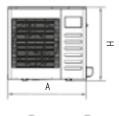

Aquadue® 7 Loading time of boilers


Aquadue® 11 Loading time of boilers

Aquadue® **13/13T** Loading time of boilers

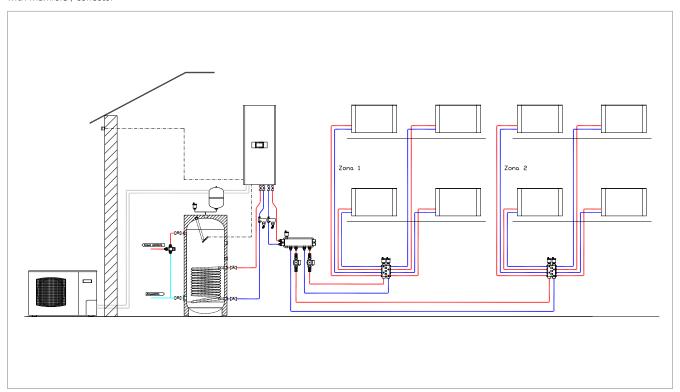

Aquadue® 16 Loading time of boilers


INTERNAL UNIT		AQUADUE 7	AQUADUE 11	AQUADUE 13	AQUADUE 13T	AQUADUE 16	AQUADUE 16T
UNII		SM	ALL		В	IG	
A	mm	500	500	500	500	500	500
В	mm	280	280	280	280	280	280
C	mm	288	288	288	288	288	288
Н	mm	1116	1116	1116	1116	1116	1116
Weight	kg	70	70	72	72	72	72


EXTERNAL 7 11 13 13T 16 1	
MONO-FAN DOUBLE FAN	
A mm 847 990 938 938 938 9	938
B mm 330 350 392 392 392 3	392
H mm 700 950 1369 1369 13	1369
Weight kg 58 82 99 102 99 1	107

INTERNAL UNIT

EXTERNAL UNIT


Code BO665 - HEATING CABLE KIT

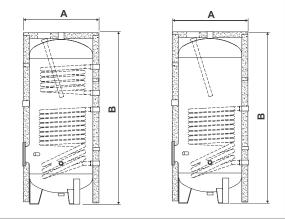
Prevents the formation of ice on the bottom of the external unit in the event of prolonged operation in particularly severe conditions.

- (a) Water outlet temperature 35°C / External air temperature 7°C (b) Water outlet temperature 35°C / External air temperature -2°C (c) Water outlet temperature 45°C / External air temperature 7°C
- (d) Water outlet temperature 45°C / External air temperature -2°C
- (e) Water outlet temperature 18°C / External air temperature 35°C (f) Water outlet temperature 7°C / External air temperature 35°C
- $\overline{(\tilde{h})}$ Water outlet temperature 55°C / Water temperature heating circuit 35°C
- (i) Water outlet temperature 55°C / Water temperature heating circuit 12°C

SHERPA AQUADUE®

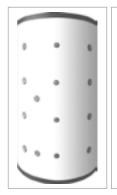
SHERPA AQUADUE Heat Pump (Heating and Cooling); High temperature DHW production; Radiator fan coils terminals Bi2 SLR: example of 2 zone plant with manifold / collector

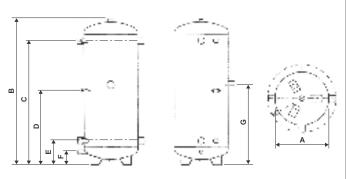
- Non-return valve
 Thermostatic mixer
 Automatic air vent
 Expansion vessel
- Water temperature sensor


 ⋈ Off valve
 Diverter valve
 Water temperature sensor
- ♥ ♥ Dirt separator filter
 ♦ Antifreeze valve
 Immersion thermosthat

BOILERS FOR DOMESTIC HOT WATER.

- Rigid polyurethane coating
- Available in double coil performance
- Enameled steel
- Sacrificial anode
- External finish in sky
- Sensor holder shaft


FEATURES		Sin	gle exchan	ger	Dou	ble exchar	nger
	Code	01193	01194	01195	01196	01197	01198
Water volume	lt	200	300	500	200	300	500
Max. water temperature	°C			8	5		
Height (tot. with isolation)	mm (B)	1215	1615	1690	1215	1615	1690
Diameter (tot. With isolation)	mm (A)	60	00	750	60	00	750
Exhanger measurement	m2	1,5	1,8	2,2	1,5/0,5	1,8/1,1	2,2/1,3
Serpentine		single	single	single	double	double	double
Material outer		Ca	sing rigid po	lyurethane co	overing 50 m	ım	
Color				blu			
Weight	kg	85	110	150	90	125	165
Energy efficiency class	ERP	С	С	D	С	С	D


On each model you can add an electric immersion resistor, which is supplied as a kit complete with a removable flange.

CodeDESCRIPTIONB0617Flange resistance kitB0618*Resistance for boiler 2 kW (for boiler up to 300 I)B0666*Resistance for boiler 3 kW (for boiler from 500 I)

PUFFER INERTIAL TANK.

- They guarantee system inertia and minimize inverter compressor frequency variations to the lowest level.
- Minimum content advised for water in the system: 3.5 liters for each kW of installed power.
- Tanks made of carbon steel coated in rigid polyurethane 50mm thick and finished in sky blue.
- Maximum water temperature 85 ° C.

	Code	01199	01200	01201
Water volume It	lt	50	100	200
Weight kg	kg	25	34	45
A (diameter without insolation) mm	mm	300	400	450
A1 (total external diameter) mm	mm	400	500	550
B (total height)	mm	933	1095	1395
C	mm	785	935	1200
D	mm	485	560	705
E	mm	180	185	215
F	mm	100	100	105
G	mm	530	605	750
Energy efficiency class	ERP	В	В	С

^(*) Optional, to be ordered as a separate kit complete with flange